

www.SmartGlass.com

2007 Study of United States LEED Accredited Professionals on the Subject of Smart Glass

Gregory M. Sottile, Ph.D.

Research Frontiers Incorporated

May 2007

Smart Glass

Materials that visibly change their light-control properties in response to a stimulus

MAJOR TYPES

Passive

- Photochromic
- Thermochromic

Active

- Electrochromic (EC)
- Liquid Crystal (LC)
- Suspended Particle Device (SPD)

Differentiating Characteristics

- Transmission: light/glare/heat
- Tuning: Binary vs. multiple states
- Switching: speed, consistency
- Substrates: glass only vs. glass or polycarbonate
- Panels: flat vs. flat or curved
- No stimulus: clear vs. opaque
- Voltage: AC vs. DC (actives only)
- Format size: large vs. small

Sustainable Architectural Design

- The movement to "Go Green"
- Sustainable development (U.N. World Commission on Environment and Development)
 - "Development is sustainable when it meets the needs of the present without compromising the ability of future generations to meet theirs."
- Energy consumed by US buildings (US DOE)
 - 2006: 39,139 trillion Btu
 - Buildings' share of total energy consumed:
 - 2006: 39.3%
 - 1973: 32.3%
- Emerging perspective: holistic view of building performance

Smart Glass and Sustainable Architectural Design

- Potential Advantages of Smart Glass
 - Broad-based integration:
 - Windows, doors, skylights, light pipes, partitions
 - Greater control over light, glare and heat
 - Improved energy efficiency
 - Optimized building performance via integration with building intelligence systems
 - Daylighting improved occupant well-being and productivity
 - Lower lifetime costs of buildings
 - Positive environmental impact

Overview of the Study

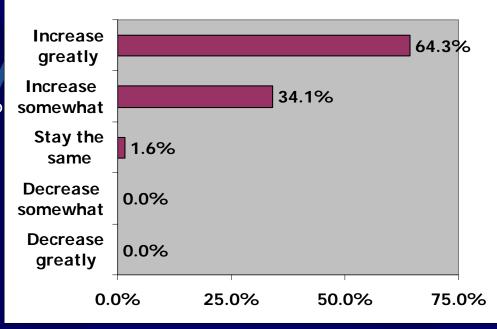
- Population: U.S. LEED Accredited Professionals (Practice area: "Architect")
 - United States Green Building Council's Leadership in Energy and Environmental Design (LEED) Green Building Rating System
 - Accredits professionals involved in the design and operation of buildings
- Online Survey
 - February 2007 communication to population: 4,401
 - Completed surveys: 455
 - Response rate: 10.3%

Respondent Profile

- 84.0% employed by an architectural, design or engineering firm
- 53.0% are licensed architects
- Project Activity Past 12 months:
 - COMMERCIAL
 - 72.8% worked on 1+ projects
 - 53.8% evaluated, recommended or specified glazing
 - RESIDENTIAL
 - 35.2% worked on 1+ projects
 - 20.4% evaluated, recommended or specified glazing

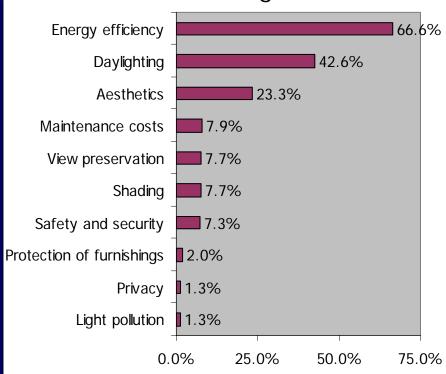
Sustainable Architectural Design: Activity and Attitudes

% OF PROJECTS THAT INVOLVE SUSTAINBLE DESIGN

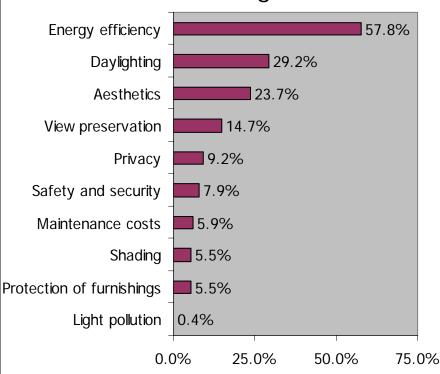

<u>Commercial</u> <u>Residential</u>

Median 25.0% 25.0%

Leading Drivers:


- Potential for energy savings: 60.9%
- Client demand for sustainability: 47.5%
- Lower lifetime operating costs: 34.5%
- Advances in sustainable materials: 20.2%

Expected Change in % of Architectural Projects That Are Sustainable: Next 5 Years



Importance of Items

Importance: COMMERCIAL Glazing

Importance: RESIDENTIAL Glazing

Additional Findings

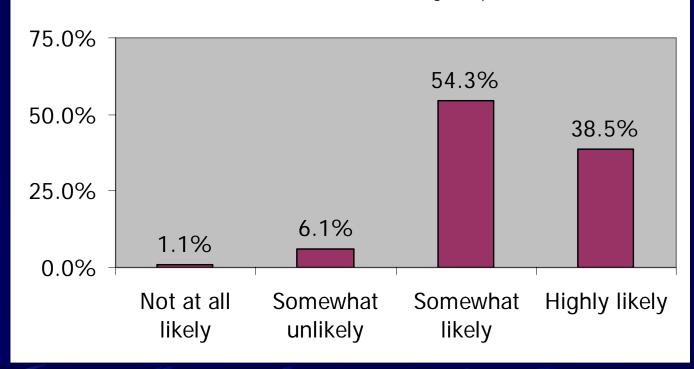
- 11.5% Are very satisfied with the current offering of windows, blinds, shades and curtains to address buildings' light-control needs.
- 78.3% Believe the importance of glazing for sustainable design will increase over the next 5 years.
- 79.2% Believe demand for laminated glass is increasing.
- 89.6% Believe demand for glazing is increasing.
- 91.6% Believe the price per ft² of glazing is increasing.
- 95.5% Believe demand for solar control glazing is increasing.
- 97.3% Believe glazing plays an important role in sustainable design.

Smart Glass: Awareness and Involvement

- 81.5% aware of smart glass
- Individual/firm ever evaluated, recommended or specified smart glass:
 - 6.6% for 1+ COMMERCIAL projects
 - 2.0% for 1+ RESIDENTIAL projects

Smart Glass: Most Desired Characteristics and Attributes

- Energy efficiency
- Durability
- Integration w/other coatings (e.g. Low-e)
- Glare reduction
- Consistent-looking tint regardless of window size
- Light-control to any point between dark and clear states
- Blockage of >99% of ultraviolet (UV) light
- Fast switching speed
- Variable solar heat gain control


Smart Glass Size and Pricing

- Desired maximum dimensions suppliers should offer (median):
 - Height: 10 ft
 - Width: 6 ft
- Maximum price clients expected to be willing to pay:
 - Commercial
 - \$50 per ft² (median)
 - 25% willing to pay \$75 or more per ft²
 - Maximum: \$200 per ft²
 - Residential
 - \$50 per ft² (median)
 - 15% willing to pay \$75 or more per ft²
 - Maximum: \$175 per ft²

The Outlook for Smart Glass

Likelihood to Recommend or Specify Smart Glass for a Project

(Assumes Reasonable Price and Meeting of Specifications)

Summary

- Growing movement toward sustainable (i.e. "green") architectural design
- Proportion of architectural projects that are sustainable expected to increase over next 5 years
- Mixed levels of satisfaction with the current offerings of windows, blinds, curtains and shades as they pertain to a building's light-control needs
- Importance of glazings for sustainable design expected to grow over the next 5 years

Summary (cont'd.)

- Smart glass offers many advantages to support sustainable design
- While awareness levels of smart glass are high, involvement levels have been low to date
- Desired characteristics and attributes of smart glass include energy efficiency, durability and integration with other coatings and films
- The outlook for architectural smart glass is extraordinarily promising